Rollover to Zoom 

|Share:

Description

Labor omnia vincit improbus. VIRGIL, Georgica I, 144-145. In the first part of his Theoria combinationis observationum erroribus min- imis obnoxiae, published in 1821, Carl Friedrich Gauss [Gau80, p.10] deduces a Chebyshev-type inequality for a probability density function, when it only has the property that its value always decreases, or at least does l not increase, if the absolute value of x increases . One may therefore conjecture that Gauss is one of the first scientists to use the property of 'single-humpedness' of a probability density function in a meaningful probabilistic context. More than seventy years later, zoologist W.F.R. Weldon was faced with 'double- humpedness'. Indeed, discussing peculiarities of a population of Naples crabs, possi- bly connected to natural selection, he writes to Karl Pearson (E.S. Pearson [Pea78, p.328]): Out of the mouths of babes and sucklings hath He perfected praise! In the last few evenings I have wrestled with a double humped curve, and have overthrown it. Enclosed is the diagram... If you scoff at this, I shall never forgive you. Not only did Pearson not scoff at this bimodal probability density function, he examined it and succeeded in decomposing it into two 'single-humped curves' in his first statistical memoir (Pearson [Pea94]).
  • ISBN13: 9780792343189
  • Publisher: Springer
  • Pubilcation Year: 1996
  • Format: Hardcover
  • Pages: 00256
Specifications
FormatHardcover
SeriesMathematics and Its Applications
Series Volume Number382
Publication DateNovember 30, 1996

Unimodality of Probability Measures

Write a Review

Free Shipping over $35 and Free Returns 

$264.99
$134.08
$0.71 off if you opt out of free returns 
0